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Abstract-Unsteady state mass transfer between a single or binary component fluid sphere and the 
continuous phase at high Reynolds number flow is examined when diffusion is accompanied (or not) by 
a first order chemical reaction. The velocity distribution derived by Chao is used in the calculations. The 
similarity transformation suggested by Ruckenstein is applied to find the mass transfer in the absence of 
chemical reactions from a single component fluid sphere. For mass transfer with or without chemical 
reactions from a binary fluid sphere, the same transformation is combined with Duhamel’s theorem in 
order to obtain the solution. 

Asymptotic expressions for the Sherwood number for pure mass transfer from a single component fluid 
sphere and for the case in which diffusion is accompanied by a first order irreversible chemical reaction 
are derived. For binary component fluid spheres the quasi steady state assumption (QSSA) is examined 

and its results compared with the exact analysis. 
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NOMENCLATURE 

radius of the bubble ; 
defined by equation (5); 
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3,/(n Re)’ 
concentration of the diffusing species ; 
concentration of the dispersed phase; 
initial concentration of the dispersed 
phase ; 
equilibrium concentration in the con- 
tinuous phase ; 
diffusion coefficient ; 
distribution coefficient ; 
first order irreversible reaction rate 
constant ; 
overall mass transfer coefficient ; 
average mass transfer rate ; 
local mass transfer rate; 
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radius coordinate of the system mea- 
sured from the center of the drop ; 
time ; 
@2(t) - Ho, 

l-Ho, ; 
translational velocity of the center of 
the drop; 
radial velocity component ; 
tangential velocity component ; 
argument of the arbitrary function C#I 
in the left hand side of equation (16) ; 
r-a ; 
yla. 

t To whom correspondence should be sent. 

Greek symbols 
a,, a2, parameters; 
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positive constant : 
length introduced by means of the 
similarity variable 9: 
Y:6: 
viscosity : 
density : 
kinematic viscosity; 
defined by equation (4) ; 
tD ,ci3 : 
Pfr: 

polar coordinate : 
separation angle; 

2, 6 . 
arbitrary function : 

41% defined by equation (19a): 
It), C C,, for binary component bubble: 

C!C* for single component bubble. 

Subscripts 
1: continuous phase; 
2, dispkrsed phase : 

x, bulk liquid condition 

INTRODUCTION 

MASS transfer between a fluid sphere and the 
continuous phase at high Reynolds numbers 
flow was first solved by Boussinesq [2] who 
obtained the steady state expression for the 
Sherwood number assuming potential Row. By 
using a different technique Ruckenstein [ll] 
has solved the unsteady state case. Levich [9]. 
superimposing a boundary layer upon the 
potential flow, has shown that for sufficiently 
large Reynolds numbers the potential flow 
represents a good approximation of the velocity 
field. Chao [3, 141 has obtained on the basis of 
Levich’s procedure a corrected velocity dis- 
tribution which is valid in a larger range of 
Reynolds numbers than the potential distri- 
bution. Winnikow [13] obtained the steady 
state Sherwood number at large Reynolds and 
Schmidt numbers. Cheh and Tobias [5] studied 
the same problem independently. 

In many processes such as mass transfer from 
binary (or multi-component) bubbles or drops 
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to the continuous phase. the concentration of 
the diffusing species in the dispersed phase 
is time dependent. Therefore it is necessary to 
consider the unsteady state transfer in these 
processes. The authors studied this problem in 
references 16,121 for low Reynolds numbers and 
potential Row. 

The aim of the present paper is to examine the 
unsteady state mass transfer in a higher range of 
Reynolds numbers by using the more realistic 
equations obtained by Chao [3] for the velocity 
distribution. The following situations will be 
considered. 

(I) Unsteady mass transfer in the continuous 
phase from a single component bubble or 
drop. 

(2) (a) Unsteady mass transfer between a binary 
bubble or drop and the continuous phase. 

(b) Validity of the quasi-steady state assump- 
tion. 

(3) (a) Llnsteady state mass transfer from a 
single or binary component fluid sphere 
to the continuous phase when diffusion 
is accompanied in the continuous phase 
by a first order irreversible chemical 
reaction. 

(b) Validity of the quasi steady state assump- 
tinn for the binary component case. 

The problems are solved by using the simi- 
larity transformation suggested previously [I 11. 

I. UNSTEADY MASS TRANSFER FROM A 
SINGLE ~OM~NENT BUBBLE OR DROP 

Consider a single component bubble or drop 
moving in a liquid phase. A diffusing species is 
transferred to the continuous phase such as in 
the gas absorption process. It is assumed that 
the bubble keeps its spherical shape and con- 
stant size; the flow is axisymmetric: thermo- 
dynamic equilibrium exists at the fluid-fluid 
interface. Therefore one can write the unsteady 
convective diffusion equations in spherical co- 
ordinates for the continuous phase as 
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g+vrg+;f=jJ g+g 
[ 

1 a ac 
+ ____ 

r2 sin e ae ( 11 sine- . 
ae 

(1) 

The velocity components of the continuous 
phase given by Chao [3,14] for high Reynolds 
numbers flow are 

00 -= l+$ sin8 
uaz ( > 

_A_ 2b( 13) (: - COST f +COS~ ep jerfci 

,/W sin e 
(3) 

where 

[ _ J(3Re) sin’ e Y 

4 (; - COST + f ~033 e)G 
(4) 

2 + 3 (P2/Pl) 

b = 1 + (P2P2hPL,Y 
(5) 

and 

2km Re = ~ 
Pl ’ 

y=r-a. 

For high Reynolds and Schmidt numbers, the 
diffusion boundary layer is thin. Consequently 
only the velocity distribution close to the fluid- 
fluid interface is of importance. Expanding the 
velocity components in terms of the distance y 
from the fluid-fluid interface and retaining 
only the first terms, one obtains 

‘OS ’ + JnZ Ke) 

sin2 e 
x 2 

2Y 

(j -cosO++cos3e)+ l- a (6) 

x (3 - cos e + 5 ~0~3 ey 
sin e I. (7) 

In equation (l), molecular diffusion in the 8 
direction may be neglected. Because in the 
region of interest y < a, the term (v,lr)(aC!atJ) 
may be approximated by (v,la) (X/de). By 
introducing the dimensionless quantities 

tD 
z=- 

a2’ 
y=Y=ll--a, 3aU 

Pe = 2 
a a 20 

and substituting equations (6) and (7) into 
equation (l), the convective diffusion equation 
can be written in the following dimensionless 
form : 

ac 
--+2Pe -case+ 
aT [ ,:(3: Re) 

sin2 e 
' (; - COST + :-COS" e)+ 1 YE a Y 

+ Pe 
[ 

sine - dtlfReJ 

X 
r; - ~0~8 + j-c~~3e)+ 

sin e 1 
ac a% 

X-c= 
ae ay2’ 

(8) 

The initial and boundary conditions are 

~(0, Y, e) = c, (9) 
c(~, a, e) = c, (10) 

qz, 0, e) = c* (11) 

C* is the equilibrium concentration at the 
interface. It is possible to write the solution of 
equations (SHll) in the following form [ 111 : 

where 

ck y, 0) = ad (12) 

Y 

v = 6fT, e)’ (13) 
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With these transformations, one can obtain the (7 + cos (1)4 _~ 
concentration distribution in the continuous I 5 (If.3 

phase as (see Appendix) 
The local flux of the diffusing specie is 

The quantity ci(~, 8) is given by and ignoring the mass transfer in the wake. the 
_._-__ 

+ 2B (2 + cos @)* - --5Y 
i 

(2 + cost?)-: I $ # Pe z + 4-L2s 117 c ‘I -t cos u - !34(2 f cos 0) 
------l-_Gc--~~ 

4B 

+ (4 - 3B2) J(4 + B2f ln ! 

B,/(3) ____I. 
$‘4-3BZ 

where 

4b 

and the function C#J is defined by 

4B _________l-.- 
+ (4 - 3P) J(4 -t BZ) 

x ,n 2$‘(2 + cos 0) - B - J(4 + B2) 
2J(2 + cos s,-=iG-$-J(4+ 

+ &i(3) ,n + J(2 + cos 0) 
4 - 3B2 - J(2 -t_ cos 0) 

=cos8-~cos3ff-2B 

average mass transfer rate is given by 

(C” - C,) D Ifs sin (1 d0 = _.______._~ 
aJ(n) s 6(& 0) 

(18) 

0 

where OS is the angle of separation. Information 
concerning the values of O,? is available in [14]. 

If one defines the mass transfer coefficient R 
as 

then the Sherwood number is given by 

(1 - cosO)(l + cos0 - BJ(2 + cosO)sinQdB _~____.______ __.“_.._. -__. .______...__“______ 

i 
J cos3 8 - cos 0 + 2B + cos e)+ - 

(2 +~_____ .----- -_ 2 (19) 

0 
I 

--“‘r--m + &(Pe T, e) 

> In equations (15) and (16) b[ ] represents li, function of 
the argument inside the brackets. where 
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[ 

2 
cjl(Pe2,8) = 4 Pez + ~ 

4 - 3B2 

In 

( 

1 + cos 8 - BJ(2 + cos e) 

1 - case > 

4B 

+ (4 - 3B2) ,/(4 + B2) 

+ cos 0) - B - ,/(4 + B2) 

> 

B\/(3) 
+ cos 0) - B + J(4 + B2) + 4 - 3B2 

,n 
. 

(194 
When B = 0, equation (16) leads to 

$ -Intan: =cose-$cos”e. (20) 
( 1 

By means of the trigonometric identity 

cos e = 1 - tan2 w2) 1 - exp[2ln tan (e/2)] 

1 + tan2 (e/2) = 1 + exp[2ln tan (e/2)] 

one can then obtain 

( 

8 
C#J PeT - lntan- 

2 > 

= 1 - exp[2( -Pe r + In tan (e/2)] 

1 + exp [2( - Pe r + In tan (e/2)] 

1 

{ 

1 - exp[2( - Pe z + In tan (e/2)] 3 -- 
3 1 + exp[2(-Pe r + In tan (e/2)] 1 

(21) 

This is the result obtained previously by 
Ruckenstein [ 1 l] for potential flow. Substituting 
equation (21) into equations (15) and (19) with 
B = 0, one can obtain the same expressions for 
&and Sh as in [ll]. 

FIG. 1. Graphical determination of the arbitrary function 4. 

For B # 0 no explicit expression can be 
established for dand numerical procedures are 
necessary. If we denote the argument of the 
arbitrary function C$ inside the bracket in 
equation (16) as X and then evaluate X and 
4(X) at different values of the angle 8, we can 
represent c#J(X) versus. X graphically. The result 
of this calculation is shown in Fig. 1. In general, 
C$ changes more rapidly in the range - 1 f X 
< 1 and attains asymptotic values at X > 1 
and X < - 1. As B 5 075, the value of C#J is 
practically constant and the variation of C$ is 
less than about 4 per cent. From Fig. 1, one 
can obtain an asymptotic expression for &cc) as 

&a) = ” _ 12BJ(3) 
3 5 

(22) 

A comparison of the numerical values of 4(m) 
from equation (16) and those from equation (22) 
is shown in Table 1. One may observe that 
equation (22) is a very good approximation for 
the steady state values of 4. Therefore one can 

Table 1. Comparisons of the values of 4 at large argument 
between the numerical values from equation (16) and asymg 

totic values from equation (22) 

B 
4 (m) 

equation (16) equation (22) 

0 0.667 0667 
0.1 0.251 0.25 1 
0.2 -0.165 -0.165 
0.3 -0.580 -0.581 
0.4 - 0.996 - 0.997 
0.5 - 1.412 - 1.410 
0.75 -2.451 - 2.450 
1 - 3.490 - 3.490 

obtain a steady state expression for 6 by sub- 
stituting equation (22) into equation (15). This 
leads to 
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From equations (23) and (l4), one obtains 

erfc 
(1 - cosfl) [l + coso - Bj(2 + cosfl)] Y 1 

zz 

+ i cos3 0 _ cos 0 + 2B 
(2 + cos e)+ 6J(3) 

(2 + cos 0)~: _ ~~~~ s-~-.~ _ -;~~~ 
\ 

This reduces to the result obtained by Winnikow (19), with the asymptotic expression equation 
[13] who has treated the steady state case. The (25) and with Winnikow’s results [13]. The 
Sherwood number from equation (19) was agreement is very good. Cheh and Tobias [5] 
computed numerically and the results are given used the velocity profiles of Moore [lo] to 
in Fig. 2. One can obtain a simple expression for study the steady state mass transfer problem and 

Table 2. Comparison of steady state Sherwood numbers of 
the present analysis and that of Winnikow [ 131 

B Winnikow Present Asymptotic 
analysis, equation (25) 

equation (19) 

0 2.309 2,308 2.309 
0.1 2.078 2.085 2.082 
0.2 1.858 1.859 3.855 
0.3 1.604 1.630 1,629 
0.4 I.366 1.399 I .402 

FIG. 2. Sherwood number vs Per for single componenl 
bubble for various values of B(R/Pe = 0). 

the steady state Sherwood number by cross 
plotting the steady state Sherwood number vs 
B from Fig. 2. This gives 

Sh = p4- - 2.268B. 
43) 

(25) 

In Table 2 a comparison is made between the 
steady state dimensionless Sherwood number 
calculated from the present analysis, equation 

presented their results in graphical form. Both 
for gas-liquid (pl $ pLz, p, $ pJ and liquid-- 

liquid (pL1 = p2, p1 z p2) systems the Sherwood 
number calculated from the present analysis 
and that of Cheh and Tobias give practically 
the same values for Re 3 80. 

For small times the integrals with respect 

to 8 may be replaced by 

1 - cos QJ 

J(f’e ~1 
and equation (19) reduces to 
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Sh = ; 11 - cos8,). 0 (26) 

Figure 2 shows the dimensionless Sherwood 

The value of Pe z required for the dimension- 

number from equation (19) as a function of Pe z. 
The error of using the potential flow for mass 

less Sherwood number to reach the steady 

transfer process increases with B and slightly 
with Pe r. For example when B = 01, the errors 

state increases slightly as a function of B. When 

of using potential flow (B = 0) in calculating 
the dimensionless Sherwood number are 5.1 per 

B = 0 and O-4, the steady state dimensionless 

cent at Pe r = 0.01 and 10.67 per cent at Pe z = 7 
respectively. It is found that the deviation of the 

Sherwood numbers are achieved at Pe z = 1.5 

steady state results from potential flow is less 
than about 2.3 per cent when B ? 0.023. 

and 2 respectively. As B increases, it takes longer 
time for the dimensionless Sherwood number 
to attain steady state. For B Z 0.75, the time in 
which the steady state is achieved is not longer 
than Pe z = 3. 

Also compared in Fig. 2 are the asymptotic 
expressions for the dimensionless Sherwood 

o water drop I” mbutanol ex,per,mentol doto 

L, ciobutanol drop I” water Of [8] 

0 
0 200 400 600 

or (251 

I I 

800 IO00 

FIG. 3. Comparison of steady state Sherwood number from 
the present analysis with experimental data in [8]. 

number, equations (25), (26), with the exact 
one, equation (19). In general, equations (25) and 
(26) give good agreement with the exact analysis 
and therefore can be used for design purposes. 

Figure 3 shows a comparison of the steady 
state Sherwood number based on the present 
calculations with some existing experimental 
data. It is seen that the steady state results from 
the present analysis compares quite well with the 
experimental data of Heertjes et al. [8]. 

II. UNSTEADY MASS TRANSFER FROM A 

to the previous one and we assume that the rate 

BINARY COMPONENT BUBBLE OR DROP 

The physical system considered here is similar 

determining step is the mass transfer in the 
continuous phase. For a single component 
bubble, the concentration of the dispersed phase 
is constant. However, the concentration of the 
dispersed phase of a binary bubble is a function 
of time. The convective diffusion equation, 
initial and boundary conditions are the same 
as equations (8)-(10) but the interfacial boundary 
condition becomes 

(27) 

where H is the distribution coefficient and C,(z) 
is an unknown function of time which can be 
determined by means of a material balance over 
the bubble. This is 

--= 

where a(~., Y, 0) = C(r, Y, 0)/C,,, o2 = C,/C,, 
and C,, is the initial concentration of the dis- 
persed phase. 

The problem is solved by combining the 
similarity transformation method [ll, 121 with 
Duhamel’s theorem [ 11. 

Applying this theorem, one can write 

s r 

~$7, Y, 0) = $ F(z - II, If 8, A,) di, (29) 
0 

C 
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where F satisfies the same set of equations as u 
does except the interface boundary condition is 
considered time independent by replacing T by 

a parameter i. Therefore F can be readily 

obtained by the same way as in Part 1. Hence the 
concentration distribution for the continuous 
phase is 

Y 
x erfc s(e, ~ _ i) di. 

1 
(30) 

However w2(r) is still an unknown function of 
time and can be determined by means of 

equation (28). It is found that 

i’ 

3 

s 

u(z) u($) = 1 - __ ~- 
2J(72) &Me) 

0 

bubble. The bubble concentration from QSSA 
is given by 

(32) 

where Sh can be calculated from equation (25). 
The validity conditions of QSSA can be ob- 
tained qualitatively as follows: From the above 

discussion (see also Fig. 2), it results that the 
mass transfer in the continuous phase for the 
case of a single component bubble approaches 
steady state when PIT 4 1. Consequently the 
time needed to achieve steady state is given by 

r - uz PeD. The time required for the bubble 
concentration to change appreciably can be 

obtained from equation (32) and is of the order 
of _ a’H;D,/(Pe. The quasi-steady state as- 

(1 - cos8) [l + cos0 - BJ(2 + COST)] sin0dBdz 

(2 + cos e)+ 

I 

-7 (31) 

2 4 cos3 6 - cos 8 + 2B (2 + cos e)+ - ~~ 5 + 41(z’ - z, 6) 

where 4 1(z’ - z, 0) is given by equation (19a) and 

5’ = Pe z, 

This integral equation has been solved numeri- 
cally by means of successive approximations. 

Numerical results concerning equation (3 1) 
are shown in Fig. 4. With these results one can 
obtain the concentration distribution in the 
continuous phase by means of equation (30). 
Also in Fig. 4 a comparison is made between 
equation (31) and the results obtained on the 
basis of the quasi-steady state assumption 
(QSSA). The QSSA employs the steady state 
mass transfer in the continuous phase together 
with an unsteady state mass balance for the 

sumption is valid if the second time is larger than 
the first. Therefore equation (32) is valid if 

HJ(Pr) + 1. 

FIG. 4. Bubble concentration vs dimensionless time. Com- 
parison between exact analysis and QSSA. 
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III. UNSTEADY MASS TRANSFER FROM A 
SINGLE OR BINARY COMPONENT BUBBLE 

WITH CHEMICAL REACTIONS 

In this case, one assumes that diffusion in the 
continuous phase is accompanied by a chemical 
reaction of the first order. With the same 
assumptions as before, the governing equations 
for the concentration distribution in the con- 
tinuous phase are 

E+2Pe -cose+--- 
[ 

J(3)B 
4 

sin’ 8 x 2 
(3 - cos 8 + f cos3 e)+ 1 ya” 

8Y 

(5 - cos 6 + f cos3 8)f 
sin 8 1 am ah 

XB=aYZ-Rw (33) 

w(0, Y, e) = w, (34) 

w(r, 30,O) = cO,emRr (35) 

w(r, 0, e) = o*(T) (36) 

where R = ka21D, and k is the rate constant for 
the first order irreversible reaction. Equation 
(35) states that the concentration in the bulk of 
the liquid phase decreases as a function of time 
due to the chemical reaction. Equation (36) is a 
thermodynamic equilibrium relation. o*(r) is a 
constant for single component bubbles and a 
function of time (which can be obtained by 

means of equation (28)) for binary component 
bubbles. For binary component bubbles, the 
assumption is made that the rate determining 
step of the process is in the continuous phase. 

To solve equations (33)-(36) one first intro- 
duces the transformation 

o(r, Y, 0) = u(r, Y, f3) emR’. (37) 

This transformation can eliminate the chemi- 
cal reaction term in equations (33) and (35) but 
it introduces a multiplication factor eRT in the 
right hand side of equation (36). Therefore the 
defining equation for V(Z, Y, 0) is similar to the 
one treated in Part II and can be solved using 
the similarity transformation and the Duhamel’s 
theorem. 

The concentration distribution for the con- 
tinuous phase for a single component bubble is 
then 

T 

~(5, Y, 0) = 
s[ 

co, + (eRA - (0J 

0 

Y 
x erfc ~ 

s(e, z, %) dA 1 
(38) 

where S(O, r) is again given by equation (15). 
If one defines the mass transfer coefficient as 

- “j 2na2D (Xiay) 1 ,,=o sin 13 de 
Kc O 

4n a2(C* - C, eekt) ’ 
(39) 

then Sherwood number is given by 

(1 - cos0) [l + cos0 - B,/(2 + COST)] sinOde 

;cos3,--cos,+2B 

+ ; eW’el~’ s r’ 

e-RZIPedz 

0 

s & (1 - cos 0) [ 1 -t cos 19 - B,/(2 + cos O)] sin 8 d&J 

X (2 + cos e)+ o 
5 1 11 

t- (40) 
+ &(z, 0) 
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where T’ = PIT, and 4, is given by equation 
(19a). 

For the binary component case, one can 
obtain the concentration distribution in the 

continuous phase by the same method as for the 
single component problem. Consequently 

asymptotic expressions for large and small time 
without chemical reactions, equations (25) and 
(26). will be used for large and small value of : 
in the inner integral with respect to 0. To 
evaluate the outer integral with respect to -_, it 
will be split into two parts. In the first part the 

integral with respect to 0 is substituted by the 
equation (26), valid for small r. In the second 
part the integral with respect to 0 is substituted 

by equation (35), valid for large Z. The value of : 
t;Jr which the transition from one range to 
another takes place is evaluated from the 
equahty of the two limiting expressions 

x erfc scs ‘- . ) 
1 

dE,. (41) 
,T t. 

However IX,(T) is still an unknown function of 
time and can be determined by means of equa- 
tion (28). One obtains that with (I), = 0 

8.7 
(1 - cos 0) [l + cos 8 - + cos 6)] sin 0 dl3 du 

x s BJ(2 
----- (42) 

: co? 0 
(2 + cow 

- cos 0 + 2B 0 ~~~~~~---~- 
I 

It is of interest to find simple asymptotic 

expressions for the Sherwood number. For 
small times, the integrals with respect to 8 in 
equation (40) may be replaced by (1 - cos OB)/ 
J(Pe r) and one obtains 

Sh ,r- R/Pr)r' ru - ul,,) 
J(Pe) q’(n)(l - w, e 

WFiTir’) L JT?, 

x (1 - cos fI,). (43) 

When T + x, the first term inside the bracket 
of equation (40) approaches zero because the 
exponential factor eeRr’ decreases rapidly as 
time increases. In order to evaluate the remain- 
ing double integral from equation (40), the 

Pe T, indicates the transition value from one 

range to the other. 
The first integral is carried out from z = 0 to 

: = PLY T, and the second from z = PC T,~ to T'. 

In this manner we can simplify equation (40) 
and obtain: 

SII R 

J(Pe) = Fe, in (1 - cos flJ 

x erf 
1 - cos c _. _~____ 

(4:,,/3) - 2.268B 
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’ ’ (44) 

Equations (40) (43) and (44) are plotted in 
Figs. 2,s and 6 for (RjPe) = 0, 1 and 100 with B 

- Exact YolUeE eqLM+lOn (40) 
----- Qsylnpto+K express,ons 

ewa+~ons(43hnd(44) 

3- 

2- 

I I I 

0 01 0 10 I.00 

Per 

FIG. 5. Sherwood number vs Pez for single component 
bubble for various values of B(R/Pe = 1). 

60 - 

&50- 
40 - 

30 - 

20 - 

I 
0~0001 0001 0 010 

Per 

FIG. 6. Sherwood number vs Per for single component 
bubble for various values of B(R/Pe = 10’). 

as parameter. One may observe that the steady 
state is reached at r,, - (l/Pe) when (RIPe) < 1 
and at Pe T,, - (PelR) when (RIPe) $ 1. For 
example, when (RIPe) = 0 (Fig. 2), steady state 

is attained at r,, - (l/Pe), and when (RIPe) = 
100 (Fig. 6), steady state is attained at Pe z,, - 
10m2. Comparison of equations (43) and (44) 
with equation (40) generally gives a good agree- 
ment. The deviation of the Sherwood number 
from the values for potential flow can be seen 
in Figs. 2, 5 and 6. Sherwood number decreases 
as B increases. As can be seen from Figs. 2, 5 
and 6, the reaction parameter, (RIPe), does not 
appear to affect the deviation from the potential 
flow. 

FIG. 7. Bubble concentration vs dimensionless time. Com- 
parison between exact analysis and QSSA. 

Solutions of equation (42) for binary com- 
ponent bubbles and the results based upon the 
quasi steady state approximation (QSSA) are 
shown in Figs. 4,7 and 8. In this case the bubble 
concentration for QSSA is 

c+(z) = exp 
-3Shz’ 

( > 2HPe 

where Sh is given by equation (44). 

3 

FIG. 8. Bubble concentration vs dimensionless time. Com- 
parison between exact analysis and QSSA. 
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The criteria for the validity of QSSA can 
again be obtained by comparing the time in 
which the concentration of the dispersed phase 
decreases appreciably with the time in which the 
continuous phase achieves steady state. This 
results in the following criteria: 

HJ(Pe) 9 1 
R 

ifFe 6 1 

and 

HJ(R) % 1 ifFP ti 1. 

Numerical results show that these criteria are 
qualitatively satisfactory. When (RIPe) = 100 
(Fig. 8), the QSSA and the exact analysis are 
practically indistinguishable because H,/(R) = 
100. In general, the error of using QSSA appears 
to be of the same order of magnitude for all 
values of B. 

CONCLISIOYS 

(1) Unsteady concentration distribution and 
the mass transfer rate from a single component 
bubble or drop have been obtained for relatively 
large Reynolds numbers (equations (14) and 
(19)). It is found that the error in the calculation 
of the Sherwood number by using potential 
flow is practically negligible when B < 0.02. 
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APPENDIX 

The similarity variable (13) transforms equation (8) into : 

(3) Solutions for mass transfer from a single 
or binary component bubble or drop with first 
order irreversible chemical reactions have been 
obtained. Asymptotic expressions for the Sher- 
wood number for single component bubble at 
small time and at steady state are established 
(equations (43) and (44)). The validity of the 

sin’ 0 
..______.~ 

(: - cos I9 + 4 co? e)* I I 
+ : sin 0 - Ji:+R;, 

x _~_. (A.1) 

quasi steady state assumption for binary com- 
ponent bubble is examined. 
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In order for a similarity solution to exist, it is necessary to 
have 

and 
64.2) 

a62 

[ 

6 
--4Pe -cosO+~ 

sin’ tI 

aT J(3n Re) (* - cos 6 + cos3 B)+ 1 P 
+ Pe 

(3 - cos 0 + f cos3 O)* 

sin e 1 
iv2 

Xae=28 (A.3) 

where p is a positive constant and is chosen 2 for convenience. 
The boundary conditions (9Hll) then become 

C(0) = c* (A.4) 

C(a)) = c,. (A.5) 

Equation (A.3) is solved by the method of characteristics. 
Hence 

From the last equation, one gets 

~(i-~~~e)~[l+c0se-BJ(2+c0se)~~=~~ 

X i c~~3e - COST + 28 (2 + COST)* 

_ (2 + ~“*]+ a2 ] (A.8) 

Therefore 

A(1 - c0se)* [l + cOse- B&2 + cose)]2 

-Q ic0s3e-c0se+2B 
Pe i 

(2 + ~0~8)' 4 _~ 
5 II=- Pe 

dr 
-= 
1 

de 

(f - cos e + 4.~08~ e)* = 

sin e 1 
dA 

sin’ e 

1 
(4.6) 

- case + gcos3 e)* 
A 

where A = a2. 
From the first equation, one gets 

Per + & In [l + cos e - BJ(2 + cos e)] 

48 

+ (4 - 3B*) J(4 + B’) 

2J(2+cos8)-B-J(4+BZ) 

2,/‘(2 + cos (3) - B + ,/(4 + B*) 

2 JW - -----ln(1 - case) + 4 
4 - 38’ 

,n 

1 ,n + COST - B J(2 + ~0~8) 

1 - c0se 

4B 

+ (4 - 38’) J(4 + P) 

2,/(2+cosO)-B-,/(4+B2) 

> 

J(3)B 
2J(2 + cos 0) - B + J(4 + B’) + 4 - 3B2 

x ,n 
( 
J(3) + J/(2 + cm 0) 
J(3) - J(2 + cos e) II (A’9) 

The boundary condition 

5 = 0, A=0 (A.lO) 

(A.? 
allows one to determine the form of the arbitrary function 4 
(see equation (16)). 

CONVECTION MASSIQUE NON PERMANENTE A PARTIR DE SPHERES FLUIDES 
POUR DES GRANDS NOMBRES DE REYNOLDS 

Rksum6On considbre le transfert de masse non permanent entre une sphkre fluide ii composant unique 
ou binaire et I’tcoulement B phase continue pour un grand nombre de Reynolds quand la diffusion est ou 
n’est pas accompagnte d’une r&action chimique de premier ordre. On utilise dans les calculs la distribution 
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de vitesse de Chao. La transformation de similitude suggeree par Ruckenstein est appliquee au calcul du 
transfert massique en I’absence de reactions chimiques depuis une sphere fluide a un seul composant. 
Quantautransfertdemasse avecou sans r&action chimiquedepuis unesphtrefluidea composantbinaire. 
on applique la meme transformation associee au thtortme de Duhamel pour la recherche de la solution. 

On obtient des expressions asymptotiques pour le nombre de Sherwood relatif a un transfert massique 
pur depuis une sphere fluide a un composant unique dans le cas oh la diffusion s’accompagne dune reaction 
chimique irreversible de premier ordre. Pour des spheres fluides a composant binaire l’hypothese d’ttat 

quasi-statique (“QSSA”) est Ctudiee et ses resultats sont compares a l’analyse exacte. 

INSTATIONARER KONVEKTIVER STOFFUBERGANG VON FLtiSSIGKEITSKUGELN BEI 
HOHEN REYNOLDS-ZAHLEN 

Zusammenfassun~Es wird untersucht der instationare Stofftransport zwischen einer Fltissigkeitskugel, 
bestehend aus einer oder zwei Komponenten, und der umgebenden Phase bei hohen Reynolds-Zahlen, 
wemt mit der Diffusion eine chemische Reaktion erster Ordnung gekoppelt ist (oder such nicht). In den 
Rechnungen wurde die Geschwindigkeitsverteilung, wie sie von Chao abgeleitet wurde, benutzt. Die 
von Ruckenstein vorgeschlagene bihnlichkeitstransformation wurde angewendet, um den Stofftransport 
ohne chemische Reaktionen von einer Einkomponenten-Fltissigkeitskugel zu bestimmen. Ftir den 
Stofftibergang mit oder ohne chemische Reaktionen von einer Zweikomponenten-Fltissigkeitskugel 
wurde die selbe Transformation kombiniert mit dem Theorem von Duhamel angewendet, urn zur Lijsung 
zu kommen. 

Es sind asymptotische Ausdrticke abgeleitet fur die Sherwood-Z&l fur reinen Stofftibergang von einer 
Einkomponenten-Fliissigkeitskugel und fur den Fall mit gleichzeitiger irreversibler chemiseher Reaktion 
erster Ordnung. Fur die Zweikomponenten-Fltissigkeitskugeln wurde die Annahme von quasistatiomlrem 

Ablauf iiberprtift und deren Ergebnisse mit der exakten Untersuchung verglichen. 

HECTAHIIOHAPHbI~ KOHHEKTBBHbIH IIEPEHOC MACCbI OT 
CQEPWIECKHX tIiZCTklH i_KIIjIHOCTII IIPII EOJIbIIIMX BHAYEHHHX 

YBCJ14 PF,HHOJIb~ICA 

AHHOT&4MR--CCneAyeTCR HecTa~I~IoIIaf,HbI~ MaccooSMea Melr;ly c@epwIecKoti qacTwel 

OnHO-HJIII ~ByXKOMIIOHeHTHOti XIII;IKOCTM M HeIIpephIBHOii I#Ia3Oti IIpIl 6Onbmax 3HaqeHLIJIX 

wcna Pehnonbnca norona, IiOIJa ~I%@Iy3IWI COnpOBOlrc~aeTCH R;IH He COnpOBO)t(AaeTCR 

XwwIsecKoti peannneh nepuoro rropnAna. B pacsBTax IscnonboyeTca pacnpeneneHrne 

c~opoc~~, nonyseHHoe rIa0. &@-I 0IIpe;Ienemirr nepeI*oca MaccbI 0T c@epnsecKofi saCTYlUb1 

OAHOKOMnOHeHTHOti xlIAKOCTI4 IIpH OTCyTCTBml XBMH'IeCKHX peaKI@ MCIIOJIb3yeTCn ripe- 

o6panosanne IIO~O6IWI,Ilpe~JIo?KeHHoe PyKeHlIITetiHOM. &WI IIonyVeHwI pemeIInH B cnysae 

IIepeHOCa MaCCbI OT C$IepIVIeCKOti YaCTIIIJbI JJByXKOMIIOHeHTHOti FKIIAKOCTII IIpH HaJIII~IllR IIJIM 

OTC~TCTBIII~ xriiwmecKrix peaKI@ HcIIo.nbnyeTcn aHa.sorwIHoe npeo6pa30sanne n coYeTannn 
c Teopesroti ,@oaMejIn. 

Honysenbr acnMnToTn9ecmte sr,rparnennn fi~rn qnc.na IIIepsyna n cnysae ‘IClCTOrO 
IIepeHOCa MaCCbI OT C@epIVIeCKOti saCTI4IIbI O~HOKOMIIOHeHTHOti FKKYIJIKOCTH I4 Ii CJIysae, 

KOrAa AI?,$CjIy311R COIIpOBOPKJaeTCII HeO6paTIIMOti XllMWIeCKOZi peaKLWefi IIepBoro nOpWWa. 

JQIR c@epwIecKMx sacTIw JJI~~XKOM~OH~HTHO~ ~KIIAK~CTLI paccMaTpIiBaeTcrI npewono2KeHRe 

0 Kna:I‘,cTa~IIO"apHOCTIl, a IIOJIyYeHHbIe pe3yJIbTaTbICpaBHMBaIOTCRC pe3y~ILTaTaMnToYHoro 

aHasm3a. 


