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Abstract— Unsteady state mass transfer between a single or binary component fluid sphere and the
continuous phase at high Reynolds number flow is examined when diffusion is accompanied (or not) by
a first order chemical reaction. The velocity distribution derived by Chao is used in the calculations. The
similarity transformation suggested by Ruckenstein is applied to find the mass transfer in the absence of
chemical reactions from a single component fluid sphere. For mass transfer with or without chemical
reactions from a binary fluid sphere, the same transformation is combined with Duhamel’s theorem in
order to obtain the solution.

Asymptotic expressions for the Sherwood number for pure mass transfer from a single component fluid

sphere and for the case in which diffusion is accompanied by a first order irreversible chemical reaction
are derived. For binary component fluid spheres the quasi steady state assumption (QSSA) is examined
and its results compared with the exact analysis.
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NOMENCLATURE

radius of the bubble;
defined by equation (5);
b

3/(nRe)’
concentration of the diffusing species ;
concentration of the dispersed phase;
initial concentration of the dispersed
phase;
equilibrium concentration in the con-
tinuous phase;
diffusion coefficient ;
distribution coefficient;
first order irreversible reaction rate
constant;
overall mass transfer coefficient;
average mass transfer rate;
local mass transfer rate;
3aU,

2D

R,

Re,

t To whom correspondence should be sent.

ka®

D’
2U pap,

T

2Ka

D’
radius coordinate of the system mea-
sured from the center of the drop;
time;
w,(t) — Ho,,

1 - Hwo,
translational velocity of the center of
the drop;
radial velocity component;
tangential velocity component ;
argument of the arbitrary function ¢
in the left hand side of equation (16);
r-a;
yla.

Greek symbols

oy, 05, parameters;
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. positive constant :

d. length introduced by means of the
similarity variable 5;

#, Yio:

i VISCosity

o density:

v, kinematic viscosity:

g, defined by equation (4);
tDia*:

T, Per:

b, polar coordinate :

8, separation angle

A, 5%

¢ arbitrary function:

¢,, defined by equation (19a):
, C/Cy for binary component bubble;
C/C* for single component bubble.

Subscripts
1, continuous phase;
2, dispersed phase:
«+,  bulk liquid condition.

INTRODUCTION

Mass transfer between a fluid sphere and the
continuous phase at high Reynolds numbers
flow was first solved by Boussinesq [2] who
obtained the steady state expression for the
Sherwood number assuming potential flow. By
using a different technique Ruckenstein [11]
has solved the unsteady state case. Levich [9],
superimposing a boundary layer upon the
potential flow, has shown that for sufficiently
large Reynolds numbers the potential flow
represents a good approximation of the velocity
field. Chao [3, 14] has obtained on the basis of
Levich’s procedure a corrected velocity dis-
tribution which is valid in a larger range of
Reynolds numbers than the potential distri-
bution. Winnikow [13] obtained the steady
state Sherwood number at large Reynolds and
Schmidt numbers. Cheh and Tobias [5] studied
the same problem independently.

In many processes such as mass transfer from
binary (or multi-component) bubbles or drops
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to the continuous phase, the concentration of
the diffusing species in the dispersed phase
is time dependent. Therefore it is necessary to
consider the unsteady state transfer in these
processes. The authors studied this problem in
references [6, 12] for low Reynolds numbers and
potential flow.

The aim of the present paper is to examine the
unsteady state mass transfer in a higher range of
Reynolds numbers by using the more realistic
equations obtained by Chao [3] for the velocity
distribution. The following situations will be
considered

(1) Unsteady mass transfer in the continuous
phase from a single component bubble or
drop.

{2) (a) Unsteady mass transfer between a binary

bubble or drop and the continuous phase.

(b} Validity of the quasi-steady state assump-
tion.

{3) (a) Unsteady state mass transfer from a
single or binary component fluid sphere
to the continuous phase when diffusion
is accompanied in the continuous phase
by a first order irreversible chemical
reaction.

(b) Validity of the quasi steady state assump-
tion for the binarv component case.

The problems are solved by using the simi-
larity transformation suggested previously {11].

I, UNSTEADY MASS TRANSFER FROM A
SINGLE COMPONENT BUBBLE OR DROP
Consider a single component bubble or drop
moving in a liquid phase. A diffusing species is
transferred to the continuous phase such as in
the gas absorption process. It is assumed that
the bubble keeps its spherical shape and con-
stant size; the flow is axisymmetric; thermo-
dynamic equilibrium exists at the fluid-fluid
interface. Therefore one can write the unsteady
convective diffusion equations in spherical co-
ordinates for the continuous phase as
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ac | ocC
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18 ac
% sineZ)]. @
t 7 sin0d0 (Smeao)] 1)

The velocity components of the continuous
phase given by Chao [3, 14] for high Reynolds
numbers flow are

o 1 as)cos9+—~4b !
U, _( r 3Re ! |2
_ 2
+ <1:i;(2:09—59>j|erfé+2|:1
1 —cosf 2] }
( Sz o > Lierfc 2)
3
ﬁvi: (1+2“—r§)sin9

" 2 1 3 g
_ 2b(/3)(§ ~ cos 0_+ scos” ) ierfcl  (3)
\/(Re) sin 0

where

vy 0C _ [alc 24C

{= (4)

J(3Re) sin? 0 y
4 (3 —cosf+ fcosOa
_ 2 + 3(pa/p)
1+ (paptalpypy)*

(5)

and
_ 2Uap,
231 ’

For high Reynolds and Schmidt numbers, the
diffusion boundary layer is thin. Consequently
only the velocity distribution close to the fluid—
fluid interface is of importance. Expanding the
velocity components in terms of the distance y
from the fluid-fluid interface and retaining
only the first terms, one obtains

Re y=r—a.

b3 [— cosf + — 2
U, 2 *UT JGuRe)
20
g sin ]27)) ©

(3 —cosO + Lcos?0) | a
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) _§ sin 0 _4b__
U, 2 JBn Re)

2 1 oned g)E
g (5 — cos 6‘+ 3 cos” 6) :| 7
sin 6

In equation (1), molecular diffusion in the 0
direction may be neglected. Because in the
region of interest y < a, the term (vy/r) (0C/00)
may be approximated by (ve/a)(0C/06). By
introducing the dimensionless quantities

tD y r—a _3aU,,

= — Y:—_ s P_
T a a ¢ 2D

and substituting equations (6) and (7) into
equation (1), the convective diffusion equation
can be written in the following dimensionless
form:

oC b
5’[— + 2 Pe |:— cos 0 + “—“—\/(371 Re)
sin? @ 1. ac
X 3 PPE] Y~
(3 —cosf + 5co8° ) | Y
4b
Pel|sing — ——
+ Pe ':sm 0 JGnRe)
(3 — cos b + §cos® O)
X ;
sn _oc  C
@ = O
The initial and boundary conditions are
CO,Y,0) = C, )
C(z, 0,0) = C,, (10)
C(t,0,0) = C* (11)

C* is the equilibrium concentration at the

interface. It is possible to write the solution of

equations (8)(11) in the following form [11]:
C(r, Y,0) = Cln) (12)

where

Y
"~ 8(t, 0)

n (13)
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With these transformations, one can obtain the (24 cos 0y 6
concentration distribution in the continuous R (16)

hase ¢ Appendi
phase as (see Appendix) The local flux of the diffusing specie is

C-¢C ac ACT ~ C,) D
~Ce 14 Ny= D= = 7
GTC erfc. (14) 0 Dﬁy - { s {17
The quantity d(z, 0) is given by and ignoring the mass transfer in the wake, the
&, 0) = 2 . f cos® @ ~ cosh
T JPe)(1 = cos §) [1 + cos § ~ BJ(2 + cos )] |
(2 + cos 8)3] 2 ([ +cosf — B2 + cos 6))
+2Bi(2 + 0 -~ P
[{ cos 8) 5 + ¢ e’f+4_3821n - '
N 4B N 2,/2 + cos@) — B— /(4 + B?) BJ(3)
(4—3B) /(4 + B) \2/2+cosf) — B+ \/(4 + B?) 4 - 3p?

< In <\/(3) + /2 + cos 0))]?2 (15)t

JB) = J2 + cos 6)

where
W
=3 /(n Re~) average mass transfer rate is given by
8y
and the function ¢ is defined by 1 . )
N =~ | 2na” Nysin 0 df
ol 2 (1 + cos 6 — B2 + cos 9)) 4na’ }
37" 1~ cosB

{18)

(C* — C,) Df sin 0 do
4B - . ,

a/{n) 3z, )
a3 Ja T B v
o (A2 + cos ) — B — Ji4 + BZ)>
M2 /2 + cos ) — B+ Jié + BY

B/(3) | J3) + J(2 + cos ) as
4 - 38> "\ JB3) = J2 + cosB)

where 0, is the angle of separation. Information
concerning the values of 0, is available in [14].
If one defines the mass transfer coefficient K

% N
=
=cosf — Lcos’f — 2B [(2 + cos 0y C C,

then the Sherwood number is given by

N
Sh: (Pe)" 1—cos())(l+COSG—B\/2(;;0CSOZ);;nQd6 L a9)
5 {;cos 9—c080+28[(2+c059)‘;— — ]-&—q&(f’et 8)}

+ In equations (15) and (16) ¢ ] represents ¢ function of
the argument inside the brackets. where




MASS TRANSFER FROM FLUID SPHERES 1375
_ 2 1 +cosO—B\/(2+cost))> 4B
¢1(Pet’0)=¢[PeT+4—3len( 1 — cosf @ —3B%) J4 + BY)

BJO) |

_ _ 2
Xln<2\/(2+cos9) B \/(4+B))+

2,/(2 + cos6) — B + /(4 + B?)

<\/(3) + /(2 + cos 9))]. (19)

4-3B "\ J3) = J2 + cos 6)

When B = 0, equation (16) leads to

1
) (— In tan g) =cosf — §cos3 6. (20)

By means of the trigonometric identity

1 —tan?(6/2) 1 — exp[2In tan (6/2)]
1+ tan2(6/2) 1 + exp[2lntan (6/2)]

cosf =

one can then obtain

¢ (Per — lntan§>

1 —exp[2(—Pet + Intan (6/2)]
" 1+ exp[2(—Pet + Intan (6/2)]

1 {1 — exp[2(—Pet + Intan (6/2)] }3

21

311 + exp[2(—Pe 1t + In tan (6/2)]
This is the result obtained previously by
Ruckenstein [11] for potential flow. Substituting
equation (21) into equations (15) and (19) with
B = 0, one can obtain the same expressions for
o.and Sh as in [11].

B8=0
8=01
o
802
B:C3

- —/—— 8:04

3
-2
8075
S
5=
4l
Il Il 1 - L L 1 L
-8 -6 -a -2 o 2 4 5 3 0
x

Fic. 1. Graphical determination of the arbitrary function ¢.

For B # 0 no explicit expression can be
established for ¢ and numerical procedures are
necessary. If we denote the argument of the
arbitrary function ¢ inside the bracket in
equation (16) as X and then evaluate X and
¢(X) at different values of the angle 6, we can
represent ¢(X) versus X graphically. The result
of this calculation is shown in Fig. 1. In general,
¢ changes more rapidly in the range —1 < X
< 1 and attains asymptotic values at X > 1
and X < —1. As B 075, the value of ¢ is
practically constant and the variation of ¢ is
less than about 4 per cent. From Fig. 1, one
can obtain an asymptotic expression for ¢(cc) as

2 12B/(3)

3 5 (22)

P(o0) =
A comparison of the numerical values of ¢(0)
from equation (16) and those from equation (22)
is shown in Table 1. One may observe that
equation (22) is a very good approximation for
the steady state values of ¢. Therefore one can

Table 1. Comparisons of the values of ¢ at large argument
between the numerical values from equation (16) and asymp-
totic values from equation (22)

¢ ()
B
equation (16) equation (22)
0 0-667 0-667
01 0251 0251
02 —0-165 —-0165
03 —0-580 —0-581
04 -0996 —-0997
05 —1412 —1-410
075 —2:451 —2:450
1 —3490 —3490

obtain a steady state expression for & by sub-
stituting equation (22) into equation (15). This
leads to
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(2 + cos0)F 6\/(3)]}5

50) = . >
B JIPe)(1 —cos6) (1 + cos — B2 +cosl) (23)
From equations (23) and (14), one obtains
Cy.0) - C.,
C* - C,,
Y ey o / “ b
— erfe {1 — cos ) [”1”4: cosf — B2 + cos Y L 24)

z{i
Pe

IR, 5 s 0V ENVAE
[% + Lcos® 0 — cos® + 2B ((2 1 cos ) — (2 + cos0)* 6J(3)>]} J

5 5

This reduces to the result obtained by Winnikow
[13] who has treated the steady state case. The
Sherwood number from equation (19) was
computed numerically and the results are given
in Fig. 2. One can obtain a simple expression for

A
A £.o
=3

\
\\\ ——- = Exact vaiues equation (19}
\
\ —— fsymptotic
\

express.ons
equations (25and{26)

3o,
e -
20

Ty w oy

FiG. 2. Sherwood number vs Petv for single component
bubble for various values of B(R/Pe = 0).

the steady state Sherwood number by cross
plotting the steady state Sherwood number vs
B from Fig. 2. This gives

Y gh— Y 2oesB.
Pe J03)

In Table 2 a comparison is made between the
steady state dimensionless Sherwood number
calculated from the present analysis, equation

(25)

(19), with the asymptotic expression equation
(25) and with Winnikow’s results [13]. The
agreement is very good. Cheh and Tobias [5]
used the velocity profiles of Moore [10] to
study the steady state mass transfer problem and

Table 2. Comparison of steady state Sherwood numbers of
the present analysis and that of Winnikow [13]

B Winnikow Present Asymptotic
analysis, equation (25)
equation (19)
0 2-:309 2:308 2-309
01 2:078 2-085 2-082
02 1-858 1-859 1-855
03 1-604 1-630 1-629
04 1-366 1-399 1-402
0-5 1-145 1175

1-170

presented their results in graphical form. Both
for gas-liquid (u; » u,, p, > p,) and liquid-
liquid (p, = pj, p; = p,) systems the Sherwood
number calculated from the present analysis
and that of Cheh and ‘Tobias give practically
the same values for Re = 80.

For small times the integrals with respect
to & may be replaced by

1 — cos 95
J(Pe)

and equation (19) reduces to
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Sh = (—L)(l — cos@)). (26)
nT

Figure 2 shows the dimensionless Sherwood
number from equation {19) as a function of Pe .
The error of using the potential flow for mass
transfer process increases with B and slightly
with Pe t. For example when B = 0-1, the errors
of using potential flow (B = 0) in calculating
the dimensionless Sherwood number are 5-1 per
centat Pe t = 0-01and 10-67 percentat Pet = 7
respectively. It is found that the deviation of the
steady state results from potential flow is less
than about 2-3 per cent when B Z 0-023.

The value of Pe t required for the dimension-
less Sherwood number to reach the steady
state increases slightly as a function of B. When
B =0 and 04, the steady state dimensionless
Sherwood numbers are achieved at Pet = 1-5
and 2 respectively. As B increases, it takes longer
time for the dimensfonless Sherwood number
to attain steady state. For B Z 0-75, the time in
which the steady state is achieved is not longer
than Pet = 3.

Also compared in Fig. 2 are the asymptotic
expressions for the dimensionless Sherwood

o water drop in isobutanoi} experimental data
A isobutanol drop in water | of [8]

1000~ . Potential
flow
800
S Present
analysis
600 equations (19)
2 or (25)
(]
&
400
A
200
o ] 1 L ] ]
o} 200 400 600 800 1000

{20l
0

FiG. 3. Comparison of steady state Sherwood number from
the present analysis with experimental data in [8].
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number, equations (25), (26), with the exact
one, equation {19). In general, equations (25) and
(26) give good agreement with the exact analysis
and therefore can be used for design purposes.
Figure 3 shows a comparison of the steady
state Sherwood number based on the present
calculations with some existing experimental
data. It is seen that the steady state results from
the present analysis compares quite well with the
experimental data of Heertjes et al. [8].

II. UNSTEADY MASS TRANSFER FROM A
BINARY COMPONENT BUBBLE OR DROP
The physical system considered here is similar
to the previous one and we assume that the rate
determining step is the mass transfer in the
continuous phase. For a single component
bubble, the concentration of the dispersed phase
is constant. However, the concentration of the
dispersed phase of a binary bubble is a function
of time. The convective diffusion equation,
initial and boundary conditions are the same
asequations (8){10) but the interfacial boundary
condition becomes

C(1,0,6) = (27)

C,(1)
H
where H is the distribution coefficient and C (1)
is an unknown function of time which can be
determined by means of a material balance over

the bubble. This is

8

2dw,(1) _J‘ dw
Q

sin 8 d@

Y=0

(28)

3 dt F)%

where (1, Y,0) = C(1, Y, 0)/Cyq, w, = C,/Cyq
and C,, is the initial concentration of the dis-
persed phase.

The problem is solved by combining the
similarity transformation method [11, 12] with

~ Duhamel’s theorem [17.

Applying this theorem, one can write

T

0
oft, Y, 0) = . JF('C — A4, ¥%0,1)d4, (29)

T Jo
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where F satisfies the same set of equations as w
does except the interface boundary condition is
considered time independent by replacing t by
a parameter /. Therefore F can be readily
obtained by the same way as in Part I. Hence the
concentration distribution for the continuous
phase is

5 \ A
o(t, Y, 0) = 5(; S[ww + (a);;/t) - ww>
0

dA.

x erfc (30)

Y
8O, v — A)

However w,{(7) is still an unknown function of
time and can be determined by means of
equation (28). It is found that
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bubble. The bubble concentration from QSSA
is given by

(32)

where Sh can be calculated from equation (25).
The validity conditions of QSSA can be ob-
tained qualitatively as follows: From the above
discussion (see also Fig. 2), it results that the
mass transfer in the continuous phase for the
case of a single component bubble approaches
steady state when Pet -~ 1. Consequently the
time needed to achieve steady state is given by
{ -~ a’'PeD. The time required for the bubble
concentration to change appreciably can be
obtained from equation (32) and is of the order
of ~ a’H/D/(Pe. The quasi-steady state as-

u(z)

3 T
A/m)j0 H./(Pe)

(1 —cos@) [1+ cos — B/(2 + cos 0)] sin 6 dbdz

X
2 0)* b
L{%cof # —cosd + 2B {(2 + cos 0)F — (—+—CSE§*){| + o, — z, 9)}

31

where ¢ (7" — z, 0) is given by equation (19a) and

w,(t) — Ho,
ulr) = %:_ Ho,

v = Per,

This integral equation has been solved numeri-
cally by means of successive approximations.
Numerical results concerning equation (31)
are shown in Fig. 4. With these results one can
obtain the concentration distribution in the
continuous phase by means of equation (30).
Also in Fig. 4 a comparison is made between
equation (31) and the results obtained on the
basis of the quasi-steady state assumption
(QSSA). The QSSA employs the steady state
mass transfer in the continuous phase together
with an unsteady state mass balance for the

sumption is valid if the second time is larger than
the first. Therefore equation (32) is valid if
H/(Pe) > 1.

F1G. 4. Bubble concentration vs dimensionless time. Com-
parison between exact analysis and QSSA.
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ITII. UNSTEADY MASS TRANSFER FROM A
SINGLE OR BINARY COMPONENT BUBBLE
WITH CHEMICAL REACTIONS

In this case, one assumes that diffusion in the
continuous phase is accompanied by a chemical
reaction of the first order. With the same
assumptions as before, the governing equations
for the concentration distribution in the con-
tinuous phase are

dw

— + 2 Pe ‘/(3)B
ot

0
[cos + — n

3 sin“ 6 ow
(3 —cosf + Jcos*O)} |~ oY
2 __ 1 3 ME
+ Pe [sin@ 3 \/(3)B(3 cos 0'+ cos 9)]
sin €
é 2w
x % =5z Ro (33
o(0,Y,0) = o, (34)
(1, 20,0) = 0 ek (35)

(1,0, 0) = w*1) (36)

where R = ka?/D, and k is the rate constant for
the first order irreversible reaction. Equation
(35) states that the concentration in the bulk of
the liquid phase decreases as a function of time
due to the chemical reaction. Equation (36) is a
thermodynamic equilibrium relation. w*(7) is a
constant for single component bubbles and a
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means of equation (28)) for binary component
bubbles. For binary component bubbles, the
assumption is made that the rate determining
step of the process is in the continuous phase.

To solve equations (33)-(36), one first intro-
duces the transformation

olt, Y,0) = vz, Y,0) e X, (37)

This transformation can eliminate the chemi-
cal reaction term in equations (33) and (35), but
it introduces a multiplication factor e® in the
right hand side of equation (36). Therefore the
defining equation for v(z, Y, 6) is similar to the
one treated in Part Il and can be solved using
the similarity transformation and the Duhamel’s
theorem.

The concentration distribution for the con-
tinuous phase for a single component bubble is
then

o(t, Y,0) = e_R’E%f[a)m + (e — w,)
0

Y
x erfc m] di (38)

where (6, 7) is again given by equation (15).
If one defines the mass transfer coefficient as

oS
— [ 2na®D (8C/0y)| - sin 6 dO
¥
0 . (39)

K=

R "
+ ﬁe(R/Pe),'J‘ e—RZ/Pedz

[o}

function of time (which can be obtained by 4na’(C* ~ Cpe™)
then Sherwood number is given by
e—(R/Pe)r‘ Pe
D T1- o, e(_R/P"”'\/<?> X
85
1 - o) (1 —cos @) [1 + cos@® — B,/(2 + cos 6)] sin §d6
I, (2 + cos B)f *
5 $3¢c08° 60 — cosf + 2B (2 + cos )t — |t o,(7,0
b (1 —cos6) [1 + cos® — B./(2 + cos 0)] sin 8 dO @0)

\

* o {% cos® @ — cos 8 + 2B [(2 + cos)t — 2+ cost) ] d4(z, 9)}
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where ©" = Pet, and ¢, is given by equation
(19a).

For the binary component case, one can
obtain the concentration distribution in the
continuous phase by the same method as for the
single component problem. Consequently

T

i 0,(4) eR*
o(t, Y, 0) =e R {;j [0)1 + ((31(-—%—"” - (x)m>
N
b

Y
o da @
x erfc S /:Jd/ (41)
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asymptotic expressions for large and small time
without chemical reactions, equations (25) and
(26), will be used for large and small value of -
in the inner integral with respect to . To
evaluate the outer integral with respect to -z, it
will be split into two parts. In the first part the
integral with respect to ¢ is substituted by the
equation (26), valid for small z. In the second
part the integral with respect to ¢/ is substituted
by equation (25), valid for large =. The value of -
for which the transition from one range to
another takes place is evaluated from the
equality of the two limiting expressions

1 — cos b, 4 /
ot =~ 2268B [or Per,
However o,(7) is still an unknown function of  «/(Pet) — J/(3) !
time and can be determined by means of equa- L cos ). 2
tion (28). One obtains that with m, = 0 = (4 \7(73) —:‘2'2683) )
’ ' R P ) t(,;),(u) e(RfPe)u
"y — a(—R/POT 1 o (R/P&)t Hdr — 2
w,(T) =€ [ + Peje w,(1) 2\/(n)j H(Pe)
0 0
8,
j (1 —cos@[1+ cos — B/(2 + cos 6)] sin 6 df du } 42)
X R - e S — RN .
., (24 cosh) , '
. {% cos® 0 — cos 6 + 2B [(2 + cos ) — ((;Au)—} + ¢ (1T — u, 6)}

It is of interest to find simple asymptotic
expressions for the Sherwood number. For
small times, the integrals with respect to 6 in
equation (40) may be replaced by (1 — cos 0 )/
V/(Pe t) and one obtains

Sh gl TRiPOT (1 —w,)
JPe)  JNl — o eTRPITY | ()

R , nPe R
B (RiPert N orf =)
a5 (e

x (1 — cos b,).

(43)

When t — x, the first term inside the bracket
of equation (40) approaches zero because the
exponential factor e ®" decreases rapidly as
time increases. In order to evaluate the remain-
ing double integral from equation (40), the

Pe 1, indicates the transition value from one
range to the other.

The first integral is carried out from z = 0 to
z = Pet, and the second from z = Pe1; to 1°.
In this manner we can simplify equation (40)
and obtain:

St If) (1 — cos )
J(Pe) Pe, |
¢ 1 — cosf, R
e [((Jﬁ) — 22688 Pe:|

+ : (4 2:268B ] ex ——5
\,'/(71) ‘\/’/(3) p Pe
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1 —cosf, \?
X <(4/\/3) _ 2~268B> ] (44)

Equations (40), (43) and (44) are plotted in
Figs. 2, 5 and 6 for (R/Pe) = 0, 1 and 100 with B

Exact values equation (40)

_____ Asymptotic expressions
equations (43)and(44)

FiG. 5. Sherwood number vs Pet for single component
bubble for various values of B(R/Pe = 1).

lid
80 Rl
Exact values equation (40)
———— Asymptotic expressions
70+ equations (43)and(44)
60
50+
o
ag
40+
30+
20
1 |
0-000! 0-001 0010
Pet

F1G. 6. Sherwood number vs Pet for single component
bubble for various values of B(R/Pe = 10?).

as parameter. One may observe that the steady
state is reached at 7., «~ (1/P¢) when (R/Pe) < 1
and at Pert, «~ (Pe/R) when (R/Pe) » 1. For
example, when (R/Pe) = 0 (Fig. 2), steady state
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is attained at 7. « (1/Pe), and when (R/Pe) =
100 (Fig. 6), steady state is attained at Pet, «
1072, Comparison of equations (43) and (44)
with equation (40) generally gives a good agree-
ment. The deviation of the Sherwood number
from the values for potential flow can be seen
in Figs. 2, 5 and 6. Sherwood number decreases
as B increases. As can be seen from Figs. 2, 5
and 6, the reaction parameter, (R/Pe), does not
appear to affect the deviation from the potential
flow.

-0
5=|, HPe =10
Pe

Exoct analysis

AN

06

walPet)

0.4}

o2

FiG. 7. Bubble concentration vs dimensionless time. Com-
parison between exact analysis and QSSA.

Solutions of equation (42) for binary com-
ponent bubbles and the results based upon the
quasi steady state approximation (QSSA) are
shown in Figs. 4, 7 and 8. In this case the bubble
concentration for QSSA is

—3Sh
,(7) = exp SHPe

where Sh is given by equation (44).

R 02 R
7o - 10, HJPe =10

Exact analysis and QSSA

FiG. 8. Bubble concentration vs dimensionless time. Com-
parison between exact analysis and QSSA.
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The criteria for the validity of QSSA can
again be obtained by comparing the time in
which the concentration of the dispersed phase
decreases appreciably with the time in which the
continuous phase achieves steady state. This
results in the following criteria:

R
H. /(P 1 if— <1
J(Pe) > if 5, <

and
H\/(R)>1 'fR > 1
P> HH— >1.
Pe

Numerical results show that these criteria are
qualitatively satisfactory. When (R/Pe) = 100
(Fig. 8), the QSSA and the exact analysis are
practically indistinguishable because H,/(R) =
100. In general, the error of using QSSA appears
to be of the same order of magnitude for all
values of B.

CONCLUSIONS

(1) Unsteady concentration distribution and
the mass transfer rate from a single component
bubble or drop have been obtained for relatively
large Reynolds numbers (equations (14) and
(19)). It is found that the error in the calculation
of the Sherwood number by using potential
flow is practically negligible when B < 0-02.

(2) Concentration fields of both the con-
tinuous and the dispersed phases have been
obtained for mass transfer from a binary
component bubble or drop to the continuous
phase at high Reynolds number flow assuming
the rate determining step in the continuous
phase. A qualitative criteria for the validity of
the quasi steady state assumption is established.

(3) Solutions for mass transfer from a single
or binary component bubble or drop with first
order irreversible chemical reactions have been
obtained. Asymptotic expressions for the Sher-
wood number for single component bubble at
small time and at steady state are established
(equations (43) and (44)). The validity of the

VI-DUONG DANG and ELI RUCKENSTEIN

quasi steady state assumption for binary com-
ponent bubble is examined.
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APPENDIX

The similarity variable (13) transforms equation (8) into:

b
J(37 Re)

2 108%
d°c + r,(lc{—g»— ~ 2Ped* [~c058 +
dn? dn (2 ¢t

sin? 0

]+ Pe [ in 0 4b
S ——— U R
(3 — cos @ + Lcos® ) 2 J(3n Re)

(A.1)

3 — cos 0 + 4 cos? 9)‘}] 252 }~ 0

T sin 6 o0
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In order for a similarity solution to exist, it is necessary to  From the last equation, one gets
have

4
20 Al —~ cos 0)% [t + cos 6 — B /(2 + cos O))% = —
4 oo (A2) Pe
and d112 dr/
06? [ P sin? @ ] , X {:‘, cos® @ — cosf + 2B [(2 + cos 6)*
T eS0Tt R RO @ = cos0 + cos? B)F A "
+ cos
p [ 8 4b (%—cosﬂ+§cos39)*] ———5—]+cx2 . } (A.8)
AR R T sin@
062 Therefore
X 0 =28 (A.3)

A(1 — cos 8)* [1 + cos 8 — B/(2 + cos 6)])2
where fi is a positive constant and is chosen 2 for convenience.

The boundary conditions (9)11) then become _ % { 1cos®0 — cos@ + 2B [(2 + cos )}
—_ *
co=c (A4) (2 + cos 9)*]}_ 4
C(00) = C,,. (A.5) - 5 " Pe
Equation (A.3) is solved by the method of characteristics.
Hence
% - ab s 6+ icos?O)F] " b = sin? 0 (A9)
R % —cosf + jcos :I [_ 0 ~]A
Pe [Sm = Jonre sin® 4+ aPe|—cosbt e ROG =~ cos + Jcos? OF
where A = 5%
From the first equation, one gets « ¢ |Pet + 2 In 1+ cos@ — BJ(2 + cos 9))
2 4 - 3B? 1 —cos@
Per+mln [1 + cos® — B,/(2 + cos 6)] . 4B
B (4 — 3B%) /(4 + BY)
T @3B Ja+ B Ja+ B 5 ]n(zJ(z + cosf) — B — /(4 + BY) )+ J(3)B
2/(2 +cosf) - B + J@ + B?) 4 - 3B
-B_ 2 7
y ln<2\/(2 + cosf) ~ B— . j/(4+B )) < In (JB) + /(2 + cos 9)>] a9
2/(2 + cosf) — B+ /(4 + BY) J3) = /(2 + cos )
2 3)B The boundary condition
— ———In{1 —cos ) + VO o)
4-3B 4-3B =0, A=0 (A.10)

In ( J3) + /2 + cos 0)) - (A7) allows one to determine the form of the arbitrary function ¢
! ) (see equation (16)).

JB) = J(2 + cos 6)

CONVECTION MASSIQUE NON PERMANENTE A PARTIR DE SPHERES FLUIDES
POUR DES GRANDS NOMBRES DE REYNOLDS

Résumé—On considére le transfert de masse non permanent entre une sphére fluide 2 composant unique
ou binaire et I’écoulement a phase continue pour un grand nombre de Reynolds quand la diffusion est ou
n’est pas accompagnée d’une réaction chimique de premier ordre. On utilise dans les calculs la distribution
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de vitesse de Chao. La transformation de similitude suggérée par Ruckenstein est appliquée au calcul du
transfert massique en 1’absence de réactions chimiques depuis une sphére fluide & un seul composant.
Quant au transfert de masse avec ou sans réaction chimique depuis une sphére fluide & composant binaire,
on applique la méme transformation associée au théoréme de Duhamel pour la recherche de la solution.
On obtient des expressions asymptotiques pour le nombre de Sherwood relatif 4 un transfert massique
pur depuis une sphére fluide 3 un composant unique dans le cas ou la diffusion s’accompagne d’une réaction
chimique irréversible de premier ordre. Pour des spheres fluides & composant binaire I"hypothése d’état
quasi-statique (““QSSA™) est étudiée et ses résultats sont comparés a I’analyse exacte.

INSTATIONARER KONVEKTIVER STOFFUBERGANG VON FLUSSIGKEITSKUGELN BEI
HOHEN REYNOLDS-ZAHLEN

Zusammenfassung—Es wird untersucht der instationdre Stofftransport zwischen einer Flissigkeitskugel,
bestehend aus einer oder zwei Komponenten, und der umgebenden Phase bei hohen Reynolds-Zahlen,
wenn mit der Diffusion eine chemische Reaktion erster Ordnung gekoppelt ist (oder auch nicht). In den
Rechnungen wurde die Geschwindigkeitsverteilung, wie sie von Chao abgeleitet wurde, benutzt. Die
von Ruckenstein vorgeschlagene Ahnlichkeitstransformation wurde angewendet, um den Stofftransport
ohne chemische Reaktionen von einer Einkomponenten-Fliissigkeitskugel zu bestimmen. Fir den
Stoffiibergang mit oder ohne chemische Reaktionen von einer Zweikomponenten-Fliissigkeitskugel
wurde die selbe Transformation kombiniert mit dem Theorem von Duhamel angewendet, um zur Lésung
zu kommen.

Es sind asymptotische Ausdriicke abgeleitet fiir die Sherwood-Zahl fur reinen Stoffiibergang von einer
Einkomponenten-Fliissigkeitskugel und fiir den Fall mit gleichzeitiger irreversibler chemischer Reaktion
erster Ordnung. Fiir die Zweikomponenten-Flissigkeitskugein wurde die Annahme von quasistationdrem

Ablauf iiberpriift und deren Ergebnisse mit der exakten Untersuchung verglichen.

HECTAIIMOHAPHBI KOHBERTUBHBIY [TEPEHOC MACCHI OT
COEPUYECKUX YACTUI[ KUJAKOCTH NMPU BOJBHINX 3HAYEHUAX
YUCJA PEMHOJLICA

Annoranus—Ulccreyercs HeCTAaMOHapHBIL MaccooOMeH Memay cepuuecxoir vacTuiei
OIHO-UJIM JBYXHOMIIOHEHTHOM KMIKOCTN M HelpepeBHO# dasoil npnm Goapmux 3HAYEHUAX
yucaa Peiinoapaca mortoxa, koria Au@QysuA CONPOBOMIAETCA WU HE CONPOBOMKAAETCH
XUMHYECKOH peakumeli upepBoro nopsaka. B pacuérax ucmonb3yeTcs pacnpejeseHune
cropoery, noy4ennoe Jao. [as onpejlefieHns HePeHOCA MACCH OT CEpHYECKON YaCTHIBL
OTHOKOMITOHOHTHOM KMUIKOCTH IPH OTCYTCTBUM XMMUYECKMX PEAKIUHA WCIOJB3YyeTcA mpe-
oGpasoBanue MOge0MA, npefoenHoe PyxeHwiTeiinom. [{uA noayvYeHnsA peileFuA B CIyvae
nepeHoca Macce oT cfepuuecKoll YacTHIIBl ABYXKOMIIOHEHTHOMN KUIKOCTH NIPH HATMIUY 1IIH
OTCYTCTBAM XMMMUYECKHX PeaKIuii UCIOJIBAYeTes aHalornvHoe npeoGpasoBanue B COYGTAHUN
¢ Teopemolt Hoamedns,

TMoxyueHs aCHMUITOTHYECKWE BHIpameHuAa aaA uucaa lllepsyga B caydae 49uCTOTO
frleperoca Maccel o7 cfepHuecKO YACTUIEL OJHOKOMIOHEHTHON (KUJIKOCTH U B Cay4vae,
korga muddysusa cONpoBOKAAETCA HeoOpaTMMOH XUMHU4YECKON peakunuefi MepBOro MOPsSAKA.
A chepuuecKUX YaCTHIl ABYXHKOMIIOHEHTHON UAKOCTM PACCMATPUBACTCH MPEANOOMEHNE
0 KBA3MCTATMOHAPHOCTH, & IIOJy4YeHHBIe pe3YIbTaThl CPABHUBAIOTCA C Pe3yIbTaTaMH TOMHOrO

a”amusa.



